Analysis of the coupling of reach of hydrotechnical structures of transport construction from culverts in the conditions of a flat building

published:
Number: Issue 27(2023)
Section: Hydrotechnical construction, water engineering and water technology
The page spacing of the article: 228–244
Keywords: highway, hydraulic jump, road culvert, hydraulic structure
How to quote an article: Artur Onyshchenko, Mykola Harkusha, Mykola Klymenko. Analysis of the coupling of reach of hydrotechnical structures of transport construction from culverts in the conditions of a flat building. Dorogi і mosti [Roads and bridges]. Kyiv, 2023. Iss. 27. P. 228–244 [in Ukrainian].

Authors

National Transport University (NTU), Kyiv, Ukraine
https://orcid.org/0000-0002-1040-4530
National Transport University (NTU), Kyiv, Ukrainе
https://orcid.org/0000-0002-5388-0561
National Transport University (NTU), Kyiv, Ukraine
https://orcid.org/0000-0002-7967-5881

Summary

Introduction. Hydraulic structures of transport construction from road culverts are used to pass water under roadways and other structures. Some terrain features require the construction of a road culvert with a steep slope, which increases the velocity of the water and creates a high-energy flow at the outlet of the road culvert. This high-energy water can erode a natural riverbed. The most effective method of extinguishing excessive kinetic energy of the water flow is extinguishing with the help of a hydraulic jump.

Problems. From the literature analysis, it was established that road culverts are in difficult operating conditions, which causes their premature destruction.

Goal. It consists in the analysis of the conjugation of reach of hydrotechnical structures of transport construction from road culverts in the conditions of a flat task.

Results. The analysis of the peculiarities of the conjugation of reach for road culverts in the conditions of a flat task was carried out, the influence of a number of factors on the length of the hydraulic jump was determined, and a methodological approach to solving the problems of conjugation of reach was given.

Conclusions. The most effective method of extinguishing excessive kinetic energy of the water flow is extinguishing with the help of a hydraulic jump. However, the issues related to the kinematics of the flow in the area of the formation of the hydraulic jump and the question of its stability have been practically investigated, the controlling influence on the flow in the spreading zone of the structural elements of active type extinguishers for relatively wide and relatively narrow channels has been poorly studied. The performed analysis of the current state of the problem allows us to draw a conclusion about the imperfection of the existing methods of calculating the conjugation of biefs and the need to improve the existing calculation approaches.

References

  1. Onyshchenko A.M., Bashkevych I.V., Harkusha M.V., Tsyvin M.N., Kozharin S.V.. Hidravlika: praktychnyy kurs iz zastosuvannyam Mathcad: pidruchnyk [Hydraulics: a practical course using Mathcad: a textbook]. Kyiv, 2022. 264 p. [in Ukrainian].
  2. Tsyvin M.N. Doslidzhennya ekspluatatsiynykh kharakterystyk pohashuvacha enerhiyi aktyvnoho typu (Study of operational characteristics of an active type energy quencher). Avtomobilʹni dorohy i dorozhnye budivnytstvo: Mezhved.nauchn.-tekhn.sb.  Кyiv, 1999. Iss. 57 P. 209–213 [in Ukrainian].
  3. Wang C, Li SS. Hydraulic Jump and Resultant Flow Choking in a Circular Sewer Pipe of Steep Slope. Water. 2018; 10(11):1674. DOI: https://doi.org/10.3390/w10111674 [in English].
  4. Chanson, H., Montes, J.S. Characteristics of undular hydraulic jumps: Experimental apparatus and flow patterns. J. Hydraul. Eng. 1995. № 121. P. 129–144 [in English].
  5. Montes, J., Chanson, H. Characteristics of undular hydraulic jumps: Experiments and analysis. J. Hydraul. Eng. 1998. № 124. P. 192–205 [in English].
  6. Ohtsu, I., Yasuda, Y., Gotoh, H. Flow conditions of undular hydraulic jumps in horizontal rectangular channels. J. Hydraul. Eng. 2003. № 129. P. 948–955 [in English].
  7. Chanson, H. Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. B/Fluids 2009. № 28. P. 191–210 [in English].
  8. Chanson, H., Brattberg, T. Experimental study of the air–water shear flow in a hydraulic jump. Int. J. Multiph. Flow 2000. № 26. P. 583–607 [in English].
  9. Valiani, A. Linear and angular momentum conservation in hydraulic jump. J. Hydraul. Res. 1997. № 35. P. 323–354 [in English].
  10. Gharangik, A.M., Chaudhry, M.H. Numerical simulation of hydraulic jump. J. Hydraul. Eng. 1991. № 117. P. 1195–1211 [in English].
  11. Molls, T., Molls, F. Space-time conservation method applied to Saint Venant equations. J. Hydraul. Eng. 1998. № 124. P. 501–508 [in English].
  12. Ellms, R. Hydraulic jump in sloping and horizontal flumes. Trans. Am. Soc. Mech. Eng. 1932. № 54. P. 113–121 [in English].
  13. Bakhmeteff, B., Matzke, A. The hydraulic jump in sloped channels. Trans. Am. Soc. Mech. Eng. 1938. № 60. P. 111–118 [in English].
  14. Kindsvater, C.E. The hydraulic jump in sloping channels. Trans. Am. Soc. Civ. Eng. 1944. № 109. P. 1107–1154 [in English].
  15. Rajaratnam, N. The hydraulic jump in sloping channels. Water Energy Int. 1966. № 23. P. 137–149 [in English].
  16. Ohtsu, I., Yasuda, Y. Hydraulic jump in sloping channels. J. Hydraul. Eng. 1991, № 117. P. 905–921 [in English].
  17. Gunal, M., Narayanan, R. Hydraulic jump in sloping channels. J. Hydraul. Eng. 1996, № 122. P. 436–442 [in English].
  18. Gotoh, H.; Yasuda, Y.; Ohtsu, I. Effect of channel slope on flow characteristics of undular hydraulic jumps. J. Appl. Mech. 2004, № 7. P. 953–960 [in English].
  19. Beirami, M.; Chamani, M.R. Hydraulic jumps in sloping channels: sequent depth ratio. J. Hydraul. Eng. 2006. № 132. P. 1061–1068 [in English].
  20. Stahl, H.; Hager, W.H. Hydraulic jump in circular pipes. Can. J. Civ. Eng. 1999. № 26 P. 368–373 [in English].
  21. Reinauer, R.; Hager, W.H. Non-breaking undular hydraulic jump. J. Hydraul. Res. 1995. № 33. P. 683–69 [in English].
  22. Gargano, R.; Hager, W.H. Undular hydraulic jumps in circular conduits. J. Hydraul. Eng. 2002. № 128. P. 1008–1013 [in English].
  23. Mykhalev M.A. Hidravlichnyy rozrakhunok potokiv z vodovorotom [Hydraulic calculation of flows with a vortex] Lviv, 1971. 184 p. [in Ukrainian].
  24. Savenko V. Matematycheskye modely y metody rascheta kvazytrekhmernykh beznapornykh potokov [Mathematical models and methods of calculation of quasi-three-dimensional pressureless flows]. D.Sc. (Ing.) Kyiv, 1992. P. 367 [in Ukrainian].
  25. Abbott, M. B. Computational Hydraulics: Elements of the Theory of Free-Surface Flows, Pitman Publishing Ltd., London, 1979 [in England].
  26. Tsyvyn M.N. Mnohofaktornyy eksperyment: hrafycheskaya ynterpretatsyya dannykh [Multifactorial experiment: graphical interpretation of data]. Kyiv, 2003. 102 p. [in Ukrainian].
  27. Onyshchenko A . M., Harkusha M. V., Klymenko M. I. Analiz konstruktyvnykh zakhodiv z ukriplennya nyzhnikh biyefiv hidrotekhnichnykh sporud u transportnomu budivnytstvi z dorozhnikh vodopropusknykh trub [Analysis of constructive measures to strengthen the lower banks of hydraulic structures in transport construction from road culverts]. Dorohy i mosty. Kyiv, 2022. Iss. 26. P. 215–227. DOI: https://doi.org/10.36100/dorogimosti2022.26.215 [in Ukrainian].
  28. Viti N, Valero D, Gualtieri C. Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water. 2019; 11(1): 28. DOI: https://doi.org/10.3390/w11010028 [in English].
  29. Valero, D.; Fullana, O.; Gacía-Bartual, R.; Andrés-Domenech, I.; Valles, F. Analytical formulation for the aerated hydraulic jump and physical modeling comparison. In Proceedings of the 3rd IAHR Europe Congress. Porto, Portugal. 14–16 April 2014 [in English].
  30. Bayon, A.; Valero, D.; García-Bartual, R.; Vallés-Morán, F.J.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80. P. 322–335 [in English].
  31. Bombardelli, F. Computational multi-phase fluid dynamics to address flows past hydraulic structures. In Proceedings of the 4th IAHR International Symposium on Hydraulic Structures. Porto, Portugal, 9–11 February 2012 [in English].
  32. Carvalho, R.; Lemos, C.; Ramos, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res. 2008, 46. P. 739–752 [in English].
  33. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 2008. 39 P. 201–225 [in English].  
  34. Rodi, W. Turbulence Models and Their Application in Hydraulics, 3rd ed.; IAHR Monograph; Taylor & Francis: New York, NY, USA, 1993 [in English].