Research of low water stream crossing structures made of metal corrugated constructions

published:
Number: Issue 31(2025)
Section: Hydrotechnical construction, water engineering and water technology
The page spacing of the article: 220-233
Keywords: highways, hydraulic jump, road culverts, hydraulic structures.
How to quote an article: Mykola Harkusha. Research of low water stream crossing structures made of metal corrugated constructions. Dorogi і mosti [Roads and bridges]. Kyiv, 2025. Issue 31. P. 220–223 [in Ukrainian].

Authors

National Transport University (NTU), Kyiv, Ukrainе
https://orcid.org/0000-0002-5388-0561

Summary

Introduction. Low water crossing structures made of corrugated metal constructions (hereinafter referred to as CMp), despite having a history of over a century of use, are still quite a new type of structure in Ukraine and are gaining widespread use in transportation construction as an alternative to traditional steel or concrete bridge structures. The well-known advantages that justify the choice of such a solution mainly include the short construction period and relatively low cost. Construction, provided the appropriate technological process is followed, does not pose significant challenges. However, the current design and construction process of low water crossing structures with CMp is imperfect and constantly improving. Some local features require the construction of a low water crossing pipe with a steep slope, which increases the speed of the water and creates a high-energy flow at the exit of the low water crossing pipe. This high-energy water can erode the natural streambed. The most effective method for dissipating excess kinetic energy from the water flow is by using a hydraulic jump. An analysis of the characteristics of the junctions of the pools for road water-crossing pipes in flat problems was conducted, the impact of various factors on the length of the hydraulic jump was determined, and a methodological approach to solving the junction problems was presented.

Problems. It has been established that there is a need to refine the existing approaches to the junction of pools for road water-crossing structures made of corrugated metal constructions, taking into account global practices.

Objectives. The main objectives of this scientific work are to study the junction of pools for low water crossing pipes in the context of a flat problem, to determine the influence of a number of factors on the length of the hydraulic jump, and to present a methodological approach to solving the problems of pool junctions.

Results. An analysis of the operational experience and the features of the functioning of water crossing structures made of corrugated metal constructions on highways has been conducted. The characteristics of the junction of pools for low water crossing pipes in the context of a flat problem have been studied. A methodological approach to solving the problems of pool junctions has been established.

The most effective way to dissipate excess kinetic energy of the water flow is through the use of a hydraulic jump. However, the issues related to the kinematics of the flow at the formation of the hydraulic jump and its stability are poorly researched. The controlling influence on the flow in the spreading zone of active-type dissipator structural elements for relatively wide and narrow channels has not been well studied.

Since in the area of the two-dimensional flow in plan the flow transforms into a three-dimensional one with a high level of anisotropic turbulence, at the current stage, only a statistical approach using methods from the theory of mathematical experiment design is possible for solving such problems.

When forming the flow with specified hydraulic characteristics, it is advisable to use the control principle – targeted influence on the flow using structural elements of the lower pool.

Using the differential form of the liquid motion equation allows for the derivation of the equation for the ideal hydraulic jump in the form explicitly related to the unknown second conjugate depth in the case of rough water conduits with a sloping bed.

The analysis of the general solution equation for the hydraulic jump showed that the influence of external friction forces and the sloping bed on the height of the hydraulic jump can be considered separately, independently of each other.

The analysis of the current state of the problem leads to the conclusion that the existing methods for calculating the junction of pools are imperfect, and there is a need to improve the current approaches to the calculations.

References

  1. Kovalʹ P. M., Falʹ A. YE., Babyak I. P., Sitdykova T. M. Normatyvne zabezpechennya proektuvannya i budivnytstva sporud z metalevykh hofrovanykh konstruktsiy (Regulatory support for the design and construction of structures made of corrugated metal structures). Dorohy i mosty. Kyiv, 2008. Vyp. 8. P. 154–158. URL: http://dorogimosti.org.ua/files/upload/Uz_21.pdf/ [in Ukrainian].
  2. Damian Beben. Soil-Steel Bridges. Geotechnical, Geological and Earthquake Engineering. Springer Nature Switzerland AG 2020., 2020. Р. 214. DOI: https://doi.org/10.1007/978-3-030-34788-8 [in English].
  3. Onyshchenko A. M., Harkusha M. V., Klymenko M. I. Analiz proyektuvannya ta budivnytstva hidrotekhnichnykh sporud transportnoho budivnytstva u vyhlyadi vodopropusknykh trub z polimernykh materialiv na avtomobilʹnykh dorohakh (Аnalysis of the design and construction of hydraulic structures of transport construction in the form of culverts made of polymer materials on highways). Dorohy i mosty. 2021. Vyp. 24. C. 112–133. DOI: https://doi.org/10.36100/ dorogimosti2021.24.112 [in Ukrainian].
  4. Luchko Y. Y., Kovalʹchuk V. V. Tekhnichnyy stan transportnykh sporudi z metalevykh hofrovanykh konstruktsiy (Technical condition of transport structures made of corrugated metal structures). Mosty ta tuneli: teoriya, doslidzhennya, praktyka. 2021. Vyp. 19. P. 38–50. DOI: https://doi.org/10.15802/ bttrp2021/233873 [in Ukrainian].
  5. Harkusha M. V. Vplyv poshkodzhenykh hidrotekhnichnykh sporud transportnoho budivnytstva z dorozhnikh vodopropusknykh trub na navkolyshnye seredovyshche (The impact of damaged hydraulic structures of transport construction from road culverts on the environment). Vodopostachannya i vodovidvedennya: proektuvannya, budivnytstvo, ekspluatatsiya, monitorynh. V mizhnarodna naukova-tekhnichna konferentsiya, 11-13 zhovtnya 2023, Ukrayina, Lʹviv : zb. mater. Elektron. dan. Kyyiv : Yarochénko YA. V., 2023. P. 82–83. DOI https://doi.org/10.51500/7826-33-9 [in Ukrainian].
  6. Tsynka A. O., Bodnar L. P. Doslidzhennya stanu mostovykh perekhodiv na osnovi analitychnoyi ekspertnoyi systemy upravlinnya mostamy (Research on the condition of bridge crossings based on an analytical expert bridge management system). Dorohy i mosty. 2020. Vyp. 21. P. 270–281. DOI: https://doi.org/10.36100/ dorogimosti2020.21.270 [in Ukrainian].
  7. Hidravlika: praktychnyy kurs iz zastosuvannyam Mathcad: pidruchnyk (Hydraulics: a practical course using Mathcad: a textbook) / A. M. Onyshchenko, I. V. Bashkevych, M. V. Harkusha, M. N. Tsyvin, S. V. Kozharin. Kyyiv: “Vydavnytstvo Lyudmyla”, 2022. 264 p. [in Ukrainian].
  8. Lipitsʹkyy H. O. Zastosuvannya hasnyka enerhiyi pry raptovomu rozshyrenni rusla v nyzhnʹomu b'yefi maloyi shtuchnoyi sporudy (Application of energy absorber during sudden widening of the channel in the lower reaches of a small artificial structure). Hidravlika: Mizhvidomchyy respublikansʹkyy naukovo-tekhnichnyy zbirnyk. K.: Tekhnika, 1965. Vyp. 1. P. 194–201 [in Ukrainian].
  9. Tsyvin M. N. Novyy pidkhid do problemy hasinnya nadmirnoyi kinetychnoyi enerhiyi za trubchastymy vodoskydamy (A new approach to the problem of extinguishing excess kinetic energy behind tubular spillways). Hidravlika ta hidrotekhnika: Mizhvidomchyy respublikansʹkyy naukovo-tekhnichnyy zbirnyk. 1998. Vyp. 59. P. 85–89 [in Ukrainian].
  10. Tsyvin M.N. Doslidzhennya ekspluatatsiynykh kharakterystyk pohashuvacha enerhiyi aktyvnoho typu (Research on the operational characteristics of an active-type energy absorber). Avtomobilʹni dorohy i dorozhnye budivnytstvo: Mizhvid. nauk.-tekhn. zb. 1999. Vyp. 57. P. 209–213 [in Ukrainian].
  11. Tsyvin M. N., Tkachenko N. I. Optymalʹna konstruktsiya kriplennya nyzhnʹoho b'yefu vodopropusknykh sporud system lymannoho zroshennya (Optimal design of fastening of the lower part of the culvert structures of estuary irrigation systems). Hidromelioratsiya ta hidrotekhnichne budivnytstvo. Lʹviv, 1988. Vyp. 16. P. 38–43 [in Ukrainian].
  12. Onyshchenko A. M., Harkusha M. V., Klymenko M. I. Analiz spryazhennya b'yefiv hidrotekhnichnykh sporud transportnoho budivnytstva z dorozhnikh vodopropusknykh trub v umovakh ploskoyi zavdachi (Analysis of the conjugation of the bunds of hydraulic structures of transport construction from road culverts in flat-bed conditions). Dorohy i mosty. Kyiv, 2023. Vyp. 27. P. 228–244. DOI: https://doi.org/10.36100/dorogimosti2023.27.228 [in Ukrainian]
  13. Wang C, Li SS. Hydraulic Jump and Resultant Flow Choking in a Circular Sewer Pipe of Steep Slope. Water. 2018; 10(11):1674. DOI: https://doi.org/10.3390/ w10111674 [in English].
  14. Chanson, H.; Montes, J.S. Characteristics of undular hydraulic jumps: Experimental apparatus and flow patterns. J. Hydraul. Eng. 1995, 121, 129–144 [in English].
  15. Montes, J.; Chanson, H. Characteristics of undular hydraulic jumps: Experiments and analysis. J. Hydraul. Eng. 1998, 124, 192–205 [in English].
  16. Ohtsu, I.; Yasuda, Y.; Gotoh, H. Flow conditions of undular hydraulic jumps in horizontal rectangular channels. J. Hydraul. Eng. 2003, 129, 948–955 [in English].
  17. Chanson, H. Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. B/Fluids 2009, 28, 191–210 [in English].
  18. Chanson, H.; Brattberg, T. Experimental study of the air–water shear flow in a hydraulic jump. Int. J. Multiph. Flow 2000, 26, 583–607 [in English].
  19. Valiani, A. Linear and angular momentum conservation in hydraulic jump. J. Hydraul. Res. 1997, 35, 323–354 [in English].
  20. Gharangik, A.M.; Chaudhry, M.H. Numerical simulation of hydraulic jump. J. Hydraul. Eng. 1991, 117, 1195–1211 [in English].
  21. Molls, T.; Molls, F. Space-time conservation method applied to Saint Venant equations. J. Hydraul. Eng. 1998, 124, 501–508 [in English].
  22. Ellms, R. Hydraulic jump in sloping and horizontal flumes. Trans. Am. Soc. Mech. Eng. 1932, 54, 113–121 [in English].
  23. Bakhmeteff, B.; Matzke, A. The hydraulic jump in sloped channels. Trans. Am. Soc. Mech. Eng. 1938, 60, 111–118 [in English].
  24. Kindsvater, C.E. The hydraulic jump in sloping channels. Trans. Am. Soc. Civ. Eng. 1944, 109, 1107–1154 [in English].
  25. Rajaratnam, N. The hydraulic jump in sloping channels. Water Energy Int. 1966, 23, 137–149
    [in English].
  26. Ohtsu, I.; Yasuda, Y. Hydraulic jump in sloping channels. J. Hydraul. Eng. 1991, 117, 905–921 [in English].
  27. Gunal, M.; Narayanan, R. Hydraulic jump in sloping channels. J. Hydraul. Eng. 1996, 122,
    436–442 [in English].
  28. Gotoh, H.; Yasuda, Y.; Ohtsu, I. Effect of channel slope on flow characteristics of undular hydraulic jumps. J. Appl. Mech. 2004, 7, 953–960 [in English].
  29. Beirami, M.; Chamani, M.R. Hydraulic jumps in sloping channels: sequent depth ratio. J. Hydraul. Eng. 2006, 132, 1061–1068 [in English].
  30. Kim, D. G. Numerical analysis of free flow past a sluice gate. KSCE J. Civ. Eng. 2007. 11 (2): 127–132. DOI: https://doi.org/10.1007/BF02823856 [in English].
  31. Kim, S., K. Yu, B. Yoon, and Y. Lim. A numerical study on hydraulic characteristics in the ice harbor-type fishway. KSCE J. Civ. Eng. 2012. 16 (2): 265–272. DOI: https://doi.org/10.1007/ s12205-012-0010-5 [in English].
  32. Mohammed, S. R., B. K. Nile, andW. H. Hassan. Modelling stilling basins for sewage networks. IOP Conf. Ser.: Mater. Sci. Eng. 2020. 671 (1): 012111. DOI: https://doi.org/10.1088/1757-899X/671/1/012111 [in English].
  33. Olsen, N. R. B., and G. Hillebrand. Long-time 3D CFD modeling of sedimentation with dredging in a hydropower reservoir. J. Soils Sediments. 2018. 18 (9): 3031–3040. DOI: https://doi.org/10.1007/s11368-018-1989-0 [in English].
  34. Karimpour, S., S. Gohari, and M. Yasi. Experimental and numerical investigation of blockage effects on flows in a culvert. J. Hydraul. 2020. 15 (2): 1–14. DOI: https://doi.org/10.30482/ jhyd.2020.211670.1425 [in English].
  35. Taha, N., M. M. El-Feky, A. A. El-Saiad, and I. Fathy. Numerical investigation of scour characteristics downstream of blocked culverts. Alexandria Eng. J. 2020. 59 (5): 3503–3513. DOI: https://doi.org/10.1016/j.aej.2020.05.032 [in English].
  36. Othman Ahmed, K., A. Amini, J. Bahrami, M. R. Kavianpour, and D. M. Hawez. Numerical modeling of depth and location of scour at culvert outlets under unsteady flow conditions. J. Pipeline Syst. Eng. Pract. 2021. 12 (4): 04021040. DOI: https://doi.org/10.1061/(ASCE)PS.1949-1204.0000578 [in English].
  37. Mostafazadeh-Fard, Saman, Samani, Zohrab. Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling. Journal of Pipeline Systems Engineering and Practice. 2023. 14. DOI: https://doi.org/10.1061/JPSEA2.PSENG-1373 [in English].
  38. Wei, G., J. Brethour, M. Grünzner, and J. Burnham. The sedimentation scour model in FLOW-3D. Flow Science Rep. 2014. No. 03-14. Santa Fe, NM: Flow Science Inc. [in English].
  39. Hirt, C. W., and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries J. Comput. Phys. 1981. 39 (1): 201–225. DOI: https://doi.org/ 10.1016/0021-9991(81)90145-5 [in English].
  40. Flow Science, FLOW-3D version 11.2 user manual. Los Alamos, NM: Flow Science. 2016 [in English].
  41. Christopher J. G. OpenFOAM User Guide version 5.0. OpenFOAM Foundation Ltd, Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. 2017 [in English].
  42. Rajaratnam, N. Hydraulic jumps in advances in hydroscience, V. T. Chow, ed., Academic Press, New York, N.Y., 1967. 197–280. DOI: https://doi.org/10.1016/ B978-1-4831-9935-1.50011-2 [in English].
  43. Mosselman E. Basic equations for sediment transport in CFD for fluvial morphodynamics. In Bates PD, Lane SN, Ferguson RI, editors, Computational fluid dynamics; applications in environmental hydraulics. Chichester: Wiley. 2005. P. 71–89 [in English].