Modeling daily temperature effects on a concrete bridge in the ukrainian climate conditions

published:
Number: Issue 32(2025)
Section: Hydrotechnical construction, water engineering and water technology
The page spacing of the article: 283-301
Keywords: road, thermal stress, concrete bridge, concrete superstructure, temperature field, temperature gradient, temperature difference, solar radiation, mathematical modeling, finite element method, stress-strain state, climatic conditions.
How to quote an article: Danylo Lukin. Modeling daily temperature effects on a concrete bridge in the ukrainian climate conditions. Dorogi і mosti [Roads and bridges]. Kyiv, 2025. Issue 32. P. 283–301 [in Ukrainian].

Authors

Kharkiv National Automobile and Highway University (KHNADU), Kharkiv, Ukraine
https://orcid.org/0009-0003-9630-1085

Summary

Introduction. Temperature effects on bridge superstructure are a constant factor influencing their performance. Due to low thermal conductivity of concrete, temperature gradients develop across cross-section of the structure, causing additional deformations and internal stresses. With global climate change and rising average annual temperatures, this issue has become especially important.

Problem statement. Underestimating temperature effects during bridge design and operation can lead to structural damage, reduced service life, and decreased reliability. Although European and American standards include models for temperature effects, Ukraine lacks comprehensive studies considering local climate conditions. A significant gap exists in experimental data, which complicates adapting or developing accurate design models.

Purpose. The main goal is to develop and validate a mathematical model for temperature distribution in concrete bridge superstructure over a daily cycle, specific to the Ukrainian climate. The model incorporates external climate parameters and material properties. It is validated by field measurements to improve accuracy in estimating temperature-induced stresses and enhancing structural reliability.

Materials and methods. The study analyzes the impact of climatic factors on the temperature of concrete bridge structure under Ukrainian climate conditions. Both analytical and numerical modeling were used. Experimental temperature measurements were taken on the span surface, combined with theoretical temperature modeling over a daily cycle using the finite element method. The stress-strain state of the span elements was also analyzed.

Results. The model, accounting for solar radiation, air temperature, and wind speed, showed good agreement with field data, with errors mostly below 10 %. The maximum temperature difference recorded in May was 14.2 °C, indicating potential increases during summer. Results confirm the importance of considering real temperature fields in the design and condition assessment of bridges in Ukraine.

Conclusions. Temperature effects have a significant impact on the stress-strain state of concrete bridge superstructure, causing notable internal stresses and temperature gradients. The proposed model, which includes solar radiation, air temperature, and wind speed, proved accurate and suitable for predicting temperature distribution. The findings highlight the need to incorporate real climate conditions in bridge design and maintenance to ensure durability and reliability.

References

  1. Leonhardt F., Kolbe G., Peter J. Temperature differences endanger prestressed concrete bridges. Beton-und Stahlbetonbau, Berlin, 1965. Vol. 7, P. 157–163 [in English].
  2. Leonhardt F., Lippoth W. Folgerungen aus Schäden an Spannbetonbrücken. Beton-und Stahlbetonbau, Berlin, 1970. Vol. 65(10), P. 231–244 [in English].
  3. Zichner T. Thermal Effects on Concrete Bridges. C. E. B. Enlarged Meeting—Commission 2, Pavia, 1981. P. 292–313 [in English].
  4. Memorandum: In-Depth Inspection of the Creeks and Spalls Developing in the Walls and Bottom Slabs of the F-11-AK, F-11-AL Structures over Miller Creek on I-70. Colorado Department of Highways, Denver, 1982 [in English].
  5. Larsson O. Climate related thermal actions for reliable design of concrete structures. Doctoral Thesis, Lund, 2012. P. 159 [in English].
  6. Luchko J. J., Karkhut I. I., Kravets I. B. Study of the bridges built in Ukraine in 1998 and 2001, that were destroyed by long-term operation and floods. Mosty ta tuneli: teoriia, doslidzhennia, praktyka, 2021. № 20, P. 26–38. DOI: https://doi.org/10.15802/bttrp2021/245313 [in Ukrainian].
  7. Luchko J. Trishchynostiikist betonnykh ta zalizobetonnykh konstruktsii z pozytsii mekhaniky ruinuvannia (Crack resistance of concrete and reinforced concrete structures from the standpoint of fracture mechanics). Nauka ta budivnytstvo, Kyiv, 2024. Vol. 39(1). P. 60–71. DOI: https://doi.org/10.33644/2313-6679-1-2024-7 [in Ukrainian].
  8. Salo V., Salo O. To the questionnaire of the operating condition of span constructions of road bridges in western areas of Ukraine. Visnyk Natsionalnoho universytetu «Lvivska politekhnika». Teoriia i praktyka budivnytstva, Lviv, 2018. Vol. 888, P. 123–126 [in Ukrainian].
  9. Wang Y. G., He X. J., Ouyang F., He J., Wu W. W., Wu C. New method for fine calculation of bridge temperature field based on BIM solar radiation analysis. Advances in Civil EngineeringHindawi. 2023. Vol. 2023(1), 6855116, P. 1–13. DOI: https://doi.org/10.1155/2023/6855116 [in English].
  10. Raghav Mahto. Thermal stress analysis in pre-stressed concrete bridges using COMSOL Multiphysics. International Journal of Surveying and Structural Engineering. 2025; Vol. 6(1), P. 27–32. DOI: https://doi.org/10.22271/2707840X.2025.v6.i1a.36 [in English].
  11. Priestley M. Structural Model of a Prestressed Concrete Box Girder Bridge Phase 2: Thermal Loading. Vol 1- Model Description and Temperature Results. MWD Central Labs, 1972. Report. Nо. 440 [in English].
  12. Priestley, M. Linear Heat-Flow Analysis of Concrete Bridge Deck. Research Report. Department of Civil Engineering. University of Canterbury, Christchurch, New Zealand, 1976. 48 p. [in English].
  13. NZ Transport Agency. Bridge Manual (3rd edition) (SP/M/022). Wellington, NZ, 2013. 374 p. [in English].
  14. Australian Standard AS 5100.2:2017 Bridge design. Part 2: Design loads, Sydney 2017. 137 p. [in English].
  15. Imbsen R. A., Vandershaf D. E., Schamber R. A., Nutt R. V. Thermal Effects in Concrete Bridge Superstructures. National Cooperative Highway Research Program Report, 276. Washington, 1985. 99 p. [in English].
  16. Potgieter I. C., Gamble W. L. Response of Highway Bridges to Nonlinear Temperature Distributions. Civil Engineering Studies, Structural Research Series N. 505. Illinois, 1983. 320 p. [in English].
  17. AASHTO LRFD Bridge Design Specifications 5th ed., American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2010. 1822 p. [in English].
  18. Emerson M. The Calculation of the Distribution of Temperature in Bridges. Transport and Road Research Laboratory TRRL Report LR 561. Department of the Environment, Crowthorne, 1973. 33 p. [in English].
  19. Emerson M. Temperature differences in bridges: basis of design requirements. Transport and Road Research Laboratory TRRL Report LR 765. Department of the Environment, Crowthorne,1977. 39 p. [in English].
  20. BRITISH STANDARD BS 5400-2:1978. Steel, concrete and composite bridges Part 2: Specification for loads. London 1978. 48 p. [in English].
  21. Eurocode 1: Actions on structures - Part 1-5: General actions – Thermalactions. Brussels, 2003. 49 p. [in English].
  22. DSTU-N B EN 1991-1-5:2012. Yevrokod 1. Dii na konstruktsii. Chastyna 1-5. Zahalni dii. Teplovi dii (Eurocode 1. Actions on structures. Part 1-5. General actions. Thermal actions (EN 1991-1-5:2003, IDT). Kyiv: Ministry of Regional Development of Ukraine, 2012. 59 p. [in Ukrainian].
  23. Athanasopoulou A., Sousa M.L., Dimova S., Rianna G., Mercogliano P., Villani V., Croce P., Landi F., Formichi P., Markova J. Thermal design of structures and the changing climate, EUR 30302 EN, Publications Office of the European Union, Luxembourg, 2020. 70 p. DOI: https://dx.doi.org/10.2760/128894 [in English].
  24. Milić P., Kušter Marić, M. Climate change effect on durability of bridges and other infrastructure. Građevinar Časopis Hrvat. Saveza Građevinskih Inženjera, 2023. Vol. 75, p. 893-906. DOI: https://doi.org/10.14256/JCE.3756.2023 [in English].
  25. Lukin D., Bezbabicheva O., Lukin O. Thermal stress calculation in concrete bridge girders. In AIP Conference Proceedings, 2025. Vol. 3428, No. 1, P. 020033. DOI: https://doi.org/10.1063/12.0038623 [in English].
  26. Liu C., DeWolf J. T. Effect of temperature on modal variability for a curved concrete bridge. In Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2006. Vol. 6174, P. 1050-1060. DOI: https://doi.org/10.1117/12.655811 [in English].
  27. Bian J., Wang Y., Li Y. Application of Thermodynamic Models in Bridge Temperature Field Simulation and Thermal Stress Analysis. International Journal of Heat & Technology, 2024. Vol. 42(4), P. 1317–1326. DOI: https://doi.org/10.18280/ijht.420422 [in English].
  28. Luchko J. J., Kovalchuk V. V. Distribution temperature in reinforced concrete beam bridge structures. Mosty i toneli: teoriia, doslidzhennia, praktyka, 2012. Vol. 3, P. 111-119. [in Ukrainian] DOI: https://doi.org/10.15802/bttrp2012/26483 [in English].
  29. Bezbabicheva O. I., Rozenfeld M. V., Bilchenko A. V., Lukin O. M., Boichuk I. P. Naukovo-doslidna robota 0207U006841, 0107U004543. Zvit pro naukovo-doslidnu robotu: rozrobyty rekomendatsii z rozrakhunku temperaturnykh poliv i napruzhen v mostovykh konstruktsiiakh z pokryttiam (Research report: development of recommendations for temperature field and stress calculation in bridge structures with deck surfacing). Kharkiv, KhNADU, 2007. 139 p. [in Ukrainian]
  30. Luchko J. J., Kovalchuk V. V. Alhorytm vyznachennia hranichnykh umov dlia doslidzhennia temperaturnykh napruzhen ta deformatsii balkovykh konstruktsii zaliznychnykh mostiv vid klimatychnykh vplyviv (Algorithm for determining boundary conditions for the study of thermal stresses and deformations in railway girder bridges under climatic effects). Visnyk Odeskoi derzhavnoi akademii budivnytstva ta arkhitektury, 2012. Vol. 46, P. 233–243 [in Ukrainian].
  31. DBN V.2.3-14:2006. Sporudy transportu. Mosty ta truby. Pravila proektuvannia (Transport structures. Bridges and culverts. Design rules). Kyiv: Ministry of Construction, Architecture and Housing of Ukraine, 2006. 359 p. [in Ukrainian].
  32. DBN V.1.2-15:2009. Sporudy transportu. Navantazhennia ta vplyvy. Mosty ta truby (Transport structures. Loads and impacts. Bridges and culverts). Kyiv: Minregionbud Ukrainy, 2009. 71 p. [in Ukrainian].
  33. DBN V.2.3-22:2009. Sporudy transportu. Mosty ta truby. Osnovni vymohy proektuvannia (Transport structures. Bridges and culverts. Basic design requirements). Kyiv: Minregionbud Ukrainy, 2009. 73 p. [in Ukrainian].
  34. Zhou G. D., Yi T. H. Thermal load in large-scale bridges: a state-of-the-art review. International Journal of Distributed Sensor Networks, 2013. Vol. 9(12), 217983. P. 1–17. DOI: https://doi.org/10.1155/2013/217983 [in English].
  35. Bergman T. L., Lavine A. S., Incropera F. P., DeWitt D. P. Fundamentals of heat and mass transfer. 8th ed. Hoboken: Wiley, 2020. 992 p. [in English].
  36. Duffie J. A., Beckman W. A. Solar engineering of thermal processes – 4th ed. – Hoboken, NJ: John Wiley & Sons, 2013. 936 p. [in English].
  37. HBN V.2.3-37641918-559:2019. Avtomobilni dorohy. Dorozhnii odiah nezhorstkyi. Proektuvannia (Automobile roads. Flexible pavement. Design). Kyiv: Ministry of Infrastructure of Ukraine, 2019. 62 p. [in Ukrainian].
  38. DSTU-N B EN 1992-1-2:2012. Yevrokod 2: Proektuvannia zalizobetonnykh konstruktsii. Chastyna 1-2. Zahalni pravila. Proektuvannia konstruktsii na dii vohniu (Eurocode 2: Design of concrete structures. Part 1-2. General rules. Structural fire design). Kyiv: Minregion Ukrainy, 2013. 120 p. [in Ukrainian].
  39. Mirzanamadi R., Johansson P., Grammatikos S. A. Thermal properties of asphalt concrete: A numerical and experimental study. Construction and Building Materials, 2018. Vol. 158, P. 774–785. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.068 [in English].
  40. DSTU 9190:2022. Enerhetychna efektyvnist budivel. Metod rozrakhunku enerhospozhyvannia pid chas opalennia, okholodzhennia, ventyliatsii, osvitlennia ta hariachoho vodosnabzhennia (Energy performance of buildings. Method for calculating energy consumption during heating, cooling, ventilation, lighting and hot water supply). Kyiv: DP «UkrNDNTs», 2022. 156 p. [in Ukrainian].
  41. Lu Y., Li D., Wang K., Jia S. Study on solar radiation and the extreme thermal effect on concrete box girder bridges. Applied sciences, 2021, Vol.11, 6332. P. 1–17. DOI: https://doi.org/10.3390/app11146332 [in English].
  42. Yang H., Zhao X., Fu L., Ruan X., Li Y., Chen D. Study of Periodical Temperature Change Induced Deformation of an Inclined Steel Arch Bridge Exposed to Actual Environment Based on Synchronous Multi-Member Thermal Simulation. Sustainability, 2022. Vol. 14(16), 10042. P. 1–13. DOI: https://doi.org/10.3390/ su141610042 [in English].
  43. Rapti A. S. Atmospheric transparency, atmospheric turbidity and climatic parameters. Solar Energy, 2000. Vol. 69(2), P. 99–111. DOI: https://doi.org/10.1016/S0038-092X(00)00053-0 [in English].
  44. Sayigh, A. A. M. Solar energy engineering. Academic Press, London, 2012. 526 p. [in English].