Problems and ways of solving the issues of operating durability of technical means of traffic control

published:
Number: Issue 26(2022)
Section: Transport technology
The page spacing of the article: 255–265
Keywords: road, polymers, aging, solar radiation, technical means, ultraviolet radiation
How to quote an article: Tetiana Kostrulova, Liudmila Nahrebelna. Problems and ways of solving the issues of operating durability of technical means of traffic control. Dorogi і mosti [Roads and bridges]. Kyiv, 2022. Iss. 26. P. 255–265 [in Ukrainian].

Authors

M.P.Shulgin State Road Research Institute – DerzhdorNDI SE, Kyiv, Ukraine
https://orcid.org/0000-0002-5615-9075
M.P. Shulgin State Road Research Institute State Enterprise - DerzhdorNDI SE, Kyiv, Ukraine
https://orcid.org/0000-0002-9554-1285

Summary

Introduction. The efficiency of road transport functioning greatly depends on the technical level and condition of roads. Modern roads must ensure traffic safety. Also, it has to be considered that the transport and operational level of a modern road is determined not only by the combination of geometric elements of the route, the number of traffic lanes, the condition of the roadway and roadsides, but also the engineering equipment of the road. Mostly, traffic safety requirements are met dut to a wide and skillful use of engineering equipment. Modern standards include, among other things, technical means of traffic  control of the roads.

Problem statement. The impact of various factors on the durability of polymeric materials

Purpose. Solving the issues of operational durability of technical means of traffic control.

Materials and methods.  Theoretical and empirical methods of scientific researches are used to analyze the impact of various factors on the durability of polymeric materials.

Results. The analysis of foreign researches concerning the impact of various factors, and especially ultraviolet radiation on durability of polymeric materials is performed.

Conclusions.   When conducting tests on artificial aging in order to predict changes in the properties of polymeric materials, it is necessary first of all to select and justify the simulated external factors and their maximum values. When determining the allowable amplification of the selected external factor as compared to its influence under operating conditions, it is necessary to be guided by the following: at the maximum value of the external aging factor in artificial conditions, the physical and chemical aging processes must be identical to those occurring in real operating conditions. Since, taking into account this condition, we will be able to obtain the most qualitative and accurate indicators.

 

References

  1. Osypov V.O. Vydavnycha diialnist Natsionalnoho transportnoho universytetu [Publishing activity of the National Transport University]. PhD (Eng.). 2017, Kyiv [in Ukrainian].
  2. DSTU 8751:2017 Bezpeka dorozhnoho rukhu. Ohorodzhennia dorozhni i napriamni prystroi. Pravyla vykorystannia. Zahalni tekhnichni vymohy [State Standard of Ukraine (DSTU 8751:2017) Road safety road barriers and guiding device. Rules of using. General technical requirements]. Kyiv, 2019. 44 p. (Information and documentation) [in Ukrainian].
  3. Hal F. Brinson, L. Catherine Brinson (2008) Characteristics, Applications and Properties of Polymers. In: Polymer Engineering Science and Viscoelasticity. Springer, Boston, MA. DOI: https://doi.org/10.1007/978-0-387-73861-1_3 [in English].
  4. Martsynko O. E. Suchasni polimerni materialy ta yikh zastosuvannia: metodychni vkazivky. Odesa, 2021. 44 p.
  5. Sporiahin E. O., Varlan K. Ye.  Teoretychni osnovy ta tekhnolohiia vyrobnytstva polimernykh kompozytsiinykh materialiv : navch. posib. 2012. 190 p. [in Russian].
  6. Measurement Good Practice Guide No. 103. Accelerated Environmental Ageing of Polymeric Materials W R Broughton and A S Maxwell. National Physical Laboratory. Teddington, Middlesex, United Kingdom, 2007, 103 p. [in English].
  7. L. Andrady, S. H. Hamid, X. Hu, A. Torikai, Effects of increased solar ultraviolet radiation on materials, Journal of Photochemistry and Photobiology B: Biology 46 (1998) P. 96-103 [in English].
  8. S. Redjala, N. Aı¨t Hocine, R. Ferhoum, M. Gratton, N. Poirot, S. Azem. UV Aging Effects on Polycarbonate Properties. J Fail. Anal. and Preven. (2020) 20: 1907–1916. 916. DOI: https://doi.org/10.1007/s11668-020-01002-9 [in English].
  9. Frigione M., Rodríguez-Prieto A. Can Accelerated Aging Procedures Predict the Long Term Behavior of Polymers Exposed to Different Environments? Polymers. 2021, 13, 2688. DOI: https://doi.org/10.3390/polym13162688 [in English].
  10. DSTU EN ISO 877-1:202X (EN ISO 877-1:2010, IDT)  Plastmasy. Metody vyprobuvannia na diiu soniachnoho vyprominiuvannia. Chastyna 1. Zahalni polozhennia [State Standard of Ukraine (DSTU EN ISO 877-1:202X (EN ISO 877-1:2010, IDT)) Plastics. Methods of exposure to solar radiation. Part 1: General guidance]. Kyiv, 36 p. (Information and documentation) [in Ukrainian].
  11. DSTU EN ISO 877-2:202X (EN ISO 877-2:2010, IDT) Plastmasy. Metody vyprobuvannia na diiu soniachnoho vyprominiuvannia. Chastyna 2. Vplyv soniachnoho vyprominiuvannia na plastmasy bezposeredno ta cherez vikonne sklo [State Standard of Ukraine (DSTU EN ISO 877-2:202X (EN ISO 877‑2:2010, IDT)) Plastics. Methods of exposure to solar radiation. Part 2: Direct weathering and exposure behind window glass]. Kyiv, 17 p. (Information and documentation) [in Ukrainian].
  12. DSTU EN ISO 877-3:202X (EN ISO 877-3:2018, IDT) Plastmasy. Metody vyprobuvannia na diiu soniachnoho vyprominiuvannia. Chastyna 3. Posylenyi vplyv kontsentrovanoho soniachnoho vyprominiuvannia [State Standard of Ukraine (DSTU EN ISO 877-3:202X (EN ISO 877-3:2018, IDT)) Plastics. Methods of exposure to solar radiation. Part 3: Intensified weathering using concentrated solar radiation]. Kyiv, 25 p. (Information and documentation) [in Ukrainian].
  13. DSTU EN ISO 4892-1:202X (EN ISO 4892-1:2016, IDT; ISO 4892-1:2016, IDT) Plastmasy. Metody vyprobuvannia na vplyv laboratornykh dzherel svitla. Chastyna 1. Zahalni polozhennia [State Standard of Ukraine (DSTU EN ISO 4892-1:202X (EN ISO 4892-1:2016, IDT; ISO 4892-1:2016, IDT)) Plastics. Methods of exposure to laboratory light sources. Part 1: General guidance]. Kyiv, 56 p. (Information and documentation) [in Ukrainian].
  14. DSTU EN ISO 4892-2:202X (EN ISO 4892-2:2013) Plastmasy. Metody vyprobuvannia na vplyv laboratornykh dzherel svitla. Chastyna 2. Ksenonovi duhovi lampy [State Standard of Ukraine (DSTU EN ISO 4892-2:202X (EN ISO 4892-2:2013)) Plastics. Methods of exposure to laboratory light sources. Part 2: Xenon-arc lamps]. Kyiv, 28 p. (Information and documentation) [in Ukrainian].
  15. DSTU EN ISO 4892-3:202X (EN ISO 4892-3:2016, IDT; ISO 4892-3:2016, IDT) Plastmasy. Metody vyprobuvannia na vplyv laboratornykh dzherel svitla. Chastyna 3. Fluorestsentni lampy ultrafioletovoho vyprominiuvannia [State Standard of Ukraine (DSTU EN ISO 4892-3:202X (EN ISO 4892-3:2016, IDT; ISO 4892-3:2016, IDT)) Plastics. Methods of exposure to laboratory light sources. Part 3: Fluorescent UV lamps]. Kyiv, 31 p. (Information and documentation) [in Ukrainian].