Review of road pavement performance in various countries

published:
Number: Issue 31(2025)
Section: Construction and civil engineering
The page spacing of the article: 51-68
Keywords: road pavement, pavement management system, pavement performance model, Hungarian road management, Albanian road management.
How to quote an article: Diana Bardhi, Altin Seranaj, László Gáspár, Zsolt Bencze. Review of road pavement performance in various countries. Dorogi і mosti [Roads and bridges]. Kyiv, 2025. Issue 31. P. 51-68 [in English].

Authors

Department of Building Constructions and Transport Infrastructure, Polytechnic Tirana University, Tirana, Albania
https://orcid.org/0009-0003-5511-1445
Department of Civil Engineering and Architecture, Metropolitan Tirana University, Tirana, Albania
https://orcid.org/0009-0002-6958-7770
Széchenyi István University, Faculty of Civil Engineering, Győr,,Hungary, and KTI Hungarian Institute for Transport Sciences and Logistics Non-Profit Ltd., Budapest, Hungary
https://orcid.org/0000-0002-0574-4100
KTI Hungarian Institute for Transport Sciences and Logistics Non Profit Ltd., Budapest, Hungary
https://orcid.org/0000-0003-2130-7864

Summary

Introduction. High quality and durable highway pavements are one of the preconditions for the efficient road traffic in every country.

Problem Statement. The high-level and scientifical design, construction, maintenance, and rehabilitation of pavement structures – pavement management – can be taken as an important task of road owners – and in the case of state-owned roads, it is directly an obligation. An important subsystem of road asset management comprises several technical tools as pavement management systems (PMSs). Pavement performance models are an essential component of a PMS and have a direct impact on future pavement condition. Pavement structural design is always a rather responsible and hard task since it is obvious that the designer must forecast (predict) – using preferably scientifically based methodologies – the performance of pavement structures to be built in the future. The reliability of this forecast, of course, mainly depends on the accuracy of the design inputs applied. The complexity of the is-sue can already be characterized by the fact that, at least, traffic, environmental, raw material, construction, maintenance-rehabilitation, operation-related and financial parameters should be considered in the prediction of pavement performance (expected lifetime) during the design (selection) of optimum pavement structural variant. (The interrelationship of these influencing parameters just makes the situation even more complicated.

Purpose. The main aim of the article is to present various aspects of pavement performance in Hungary and Albania.

Materials and Methods. The paper outlines the role (the significance) of pavement performance models in the road asset management, especially in the scientifically based pavement structural design, pointing out the related challenges. After giving a short worldwide review of the topic, the presentation of the special theoretical and practical experiences on pavement performance models in two European countries (Hungary and Albania) are summarized, as case studies.

Results. At the end of the article, some conclusions are drawn, and several proposals are made on the creation and the utilization of pavement performance models including the high significance of a successful road asset management on national economy level; the importance of a scientifically based PMS in increasing the economy of road transport; the direct impact of pavement performance models on future pavement condition, as a major influencing factor of road traffic efficiency; the supporting role of Performance-based Maintenance and Safety Improvements to high volume roads performed in Albania can significantly support to medium-term road management decisions.

References

  1. L. Gáspár: Road management. Academy Press, 2003, 361 p. [In Hungarian].
  2. R. Shabanpour: Pavement Performance Modeling: Literature Review and Research Agenda University of Illinois at Chicago, Illinois Asphalt Pavement Association, 2017, 8 p. [in English].
  3. N. Li, W.-C. Xie, R. Haas: Reliability-based processing of Markov chains for modeling pavement network deterioration. Transportation Research Record, 1524, 1996. Р. 203–213 [in English].
  4. K.P. George, A.S. Rajagopal, L.K. Lim: Models for predicting pavement deterioration. Transportation Research Record 1215, 1989. Р. 1–7 [in English].
  5. Applied Research Associates Inc.: Guide for Mechanistic-Empirical Design for New and Rehabilitated Pavement Structures: NCHRP 1-37A Final Report. Prepared for NCHRP, Transportation Research Board, 2004, 424 p. [in English].
  6. M.F. Saleh, M.S. Mamlouk, E.B. Owusu-Antwi: Mechanistic roughness model based on ve-hicle-pavement interaction. Transportation Research Record 1699, 2000. Р. 114–120 [in English].
  7. C. Queiroz: A Mechanistic Analysis of Asphalt Pavement Performance in Brazil. Journal of Association of Asphalt Paving Technologists, 52, 1983. Р. 474–488 [in English].
  8. AASHO: The AASHO Road Test Report 5: Pavement Research, Special Report 61 E. Highway Research Board, National Research Council, Washington, DC., 1962, 371 p. [in English].
  9. Watanatada, T., Harral, C.G., Paterson, W.D.O., Dreshwar, A.M., Bhandari, A., Tsunokawa, K.: The highway design and maintenance standards model (Vol. 2): User’s manual for the HDM-III model (English). URL: http://documents.worldbank.org/curated/en/615821468142166343/User-s-manual-for-the-HDM-III-model, 1987, 403 p. [in English].
  10. A. Ferreira, L. Picado-Santos, A. Antunes, P. Pereira: A Deterministic Optimization Model Proposed for the Lisbon’s PMS. Proceedings, MAIREPAV – Third International Symposium on Maintenance and Rehabilitation of Pavements, 2003, Р. 555–564 [in English].
  11. R.V. LeClerc, T.L. Nelson, T.L.: Washington State’s Pavement Management System. Proceeding of the 5th International Conference on the Structural Design of Asphalt Pavements, 1982, Р. 533–552
    [in English].
  12. P. K. Chan, M. C. Oppermann, S. Wu: North Carolina's experience in development of pavement performance prediction and modeling. Transportation Research Record, 1592, 1997, Р. 80–88 [in English].
  13. P. E. Sebaaly, A. Hand, J. Epps, C. Bosch: Nevada’s Approach to Pavement Management.  Transportation Research Record, 1524, 1996, Р. 109–117 [in English].
  14. D.P. Mohammed, K. C. Sinha, P. S. McCarthy: Relationship between Pavement Performance and Routine Maintenance: Mixed Logit Approach. Transportation Research Record, 1597, 1997. Р. 16–21 [in English].
  15. J.A. Prozzi, S. M. Madanat: Development of pavement performance models by combining experimental and field data. Journal of Infrastructure Systems, 10(1), 2004. Р. 9–22 [in English].
  16. D. Bardhi: Aspects of Management and Road Maintenance in Albania. European Journal of Multidisciplinary Studies, 1(2), 2016, Р. 266–279. DOI: https://doi.org/10.26417/ejms.v1i2 [in English].
  17. A. Golgota, D. Bardhi: Road Investment and Regional Development Some Evidencies from Albania. European Journal of Multidisciplinary Studies, 1(1), 2016, Р. 333–340. ISSN 2414-8377 [in English].
  18. Y. Du, C. Liu, D. Wu, S. Li: Application of vehicle mounted accelerometers to measure pavement roughness, International Journal of Distributed Sensor Networks, 12, 2016, 8413146, 8 p. DOI: https://doi.org/10.1155/2016/8413146 [in English].
  19. W. Aleadelat, K. Ksaibati: Estimation of pavement serviceability index through android-based smartphone application for local roads, Transportation Research Record, 2639(1), 2017. Р. 129–135 DOI: https://doi.org/10.3141/2639-16 [in English].
  20. M.M. Aydın, M.S. Yildirim, L. Farslöf: The use of smart phones to estimate road roughness: a case study in Turkey. Engineering Sciences, 13(3), 2018. Р. 247–257 [in English].
  21. K. Gopalakrishnan, S.K. Khaitan, A. Choudhary, A. Agrawal: Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection, Construction and Building Materials, 157, 2017. Р. 322–330 DOI: https://doi.org/10.1016/j. conbuildmat.2017.09.110 [in English].
  22. H. Maeda, Y. Sekimoto, T. Seto et al.: Road damage detection and classification using deep neural networks with smartphone images: road damage detection and classification, Computer-Aided Civil and Infrastructure Engineering, 33(2), 2018, Р. 1–15. DOI: https://doi.org/10.1111/mice.12387 [in English].
  23. H. Zakeri, F.M. Nejad, A. Fahimifar: Image based techniques for crack detection, classification and quantification in asphalt pavement: a review. Archives of Computational Methods in Engineering 24(4), 2016. Р. 935–977. DOI: https://doi.org/10.100/s11831-016-9194-z [in English].
  24. L. Gáspár: Compilation of First Hungarian Network-Level Pavement Management System. Transportation Research Record 1455 Pavement Management Systems. National Academy Press, Washington, D.C., 1994, Р. 22–30 [in English].
  25. A. Bakó, M. Csicsely-Tarpay, T. Szántai, L. Gáspár: Multi-time Period Network-level PMS in Hungary Based on Markov Chains. Second International Conference on Road and Airfield Pavement Technology, Singapore, Vol 1, 1995, Р. 384–392 [in English].
  26. A. Sarja: A process towards lifetime engineering in the 5th and 6th Framework Program of EU. Proceedings of 2nd International Symposium ILCDES, Kuopio, Finland, 2003, Р. 7–12 [in English].
  27. L. Gáspár: Lifetime engineering in road asset management. Proceedings of 3rd European Pavement and Asset Management Conference, Coimbra (Portugal), Session B3, 2008, 10 p. [in English].
  28. L. Gáspár: The utilisation of pavement performance data in the Hungarian road management. Proceedings of International Conference on Advanced Characterization of Pavement and Soil Engineering Materials, Athens, Vol. II, 2007, Р. 1699–1707 [in English].
  29. W.D.D. Paterson: Road Deterioration and Maintenance Effects: Models for Planning and Management. World Bank, Washington, D.C. 1987, 454 p. [in English].
  30. URL: https://datavizcatalogue.com/methods/box_plot.html [in English].
  31. L. Gáspár: Pavement condition before and after rehabilitation. The International Journal of Pavement Engineering & Asphalt Technology 5(1), 2004. Р. 15–25 [in English].
  32. L. Gáspár: Actual condition improving effect of major pavement maintenance treatments. Proceedings of 2nd European Pavement and Asset Management Conference, Berlin, 2004, 8 p. [in English].
  33. E. Nemesdy, T. Boromisza, E. Zsiga Kiss: Evaluation of bearing capacity measuring methods. Transport Scientific Association, report № 87/89. Budapest, 1989. (In Hungarian) [in English].
  34. D. Bardhi: Road Asset Management Assessment. European Journal of Engineering and Formal Sciences. 5(1), 2021, Р. 25–36. DOI: https://doi.org/10.26417/ 646qpv23t [in English].
  35. A. Golgota, D. Bardhi: Asset Management Public Assessment of Road Infrastructure. European Journal of Multidisciplinary Studies, 2016, 1, Р. 172–179. DOI: https://doi.org/10.26417/ejms.v1i3. Р. 172–179 [in English].
  36. R. Ramaswamy, M. Ben-Akiva: Estimation of highway pavement deterioration from in-service pavement data. Transportation Research Record, 1272, 1991. Р. 96–106 [in English].
  37. S.M. Madanat, S. Bulusu, A. Mahmoud: Estimation of infrastructure distress initiation and progression models, Journal of Infrastructure Systems, 1(3), 1995. Р. 146–150 [in English].
  38. J.A. Prozzi, F. Hong: Transportation infrastructure performance modeling through seemingly unrelated regression systems. Journal of Infrastructure Systems, 14(2), 2008. Р. 129–137 [in English].
  39. K.L. Smith, K.D. Smith, L.D. Evans, T.E. Hoerner, M.I. Darter, J.H. Woodstrom: Final report: Smoothness specifications for pavements. NCHRP Web Document 1, National Cooperative Highway Research Program, Washington, DC, 1997 [in English].
  40. W.D.O. Paterson, A.D. Chesher: On predicting pavement surface distress with empirical models of failure times., Transportation Research Record, 1095, 1986. Р. 45–56 [in English].
  41. Z.S. Nakat, S. M. Madanat: Stochastic duration modeling of pavement overlay crack initiation, Journal of Infrastructure Systems, 14(3), 2008. Р. 185–192 [in English].
  42. S.M. Madanat, M. G. Karlaftis, P. S. McCarthy: Probabilistic infrastructure deterioration models with panel data, Journal of Infrastructure Systems, 3(1), 1997. Р. 4–9 [in English].
  43. A.R. Archilla: Repeated measurement data analysis in pavement deterioration modeling. Journal of Infrastructure Systems, 12(3), 2006, Р. 163–173 [in English].
  44. A.R. Archilla, S.M. Madanat: Estimation of rutting models by combining data from different sources, Journal of Transportation Engineering, 127(5), 2001. Р. 379–389 [in English].
  45. K.C.P. Wang, J. Zaniewski, G. Way: Probabilistic behavior of pavements. Journal of Transportation Engineering, 120(3), 1994. Р. 358–375 [in English].
  46. L. Gáspár: Highway performance modelling. Proceedings of International Conference on Developments in Road Engineering. National Institute of Technology, Rourkela, India, 2010, Р. 24-36 [in English].
  47. Finn, F.N., Kulkarni, R., Nair, K., 1974. Pavement Management System Feasibility Study, Final Report. Prepared for Washington Highway Commission, Department of Highways, Olympia, Washington. [in English].
  48. Haas, R., Hudson, W., R., Zaniewski, J., P., 1994. Modern Pavement Management. Krieger Publishing Company, Malabar, Florida [in English].
  49. A. Butt, M.Y. Shahin, K.J. Feighan, S.H. Carpenter: 1987. Pavement Performance Prediction Model using the Markov Process. Transportation Research Record, 1123, 1987. Р. 12–19 [in English].
  50. F. Hong, J.A. Prozzi: Estimation of pavement performance deterioration using Bayesian approach. Journal of Infrastructure System, 12(2), 2006. Р. 77–86 [in English].
  51. A. Hu, Q. Bai, L. Chen, S. Meng, Q. Li, Z. Xu: A review on empirical methods of pavement performance modelling. Construction and Building Materials, 342, Part B, 2022, 127968. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127968 [in English].
  52. R. Justo-Silva, A. Ferreira, G. Flintsch: Review on machine learning techniques for developing pavement performance prediction models, Sustainability, 13(9), 2021, 5248. DOI: https://doi.org/10.3390/su13095248 [in English].
  53. H. Pérez-Acebo, A. Linares-Unamunzaga, R. Abejón, E. Rojí: Research Trends in Pavement Management during the First Years of the 21st Century: A Bibliometric Analysis during the 2000–2013 Period. Applied Sciences, 8(7), 2018. DOI: https://doi.org/10.3390/app8071041 [in English].
  54. N.E. Abdelaziz, R.A. El-, S. El-Badawy: International Roughness Index prediction model for flexible pavements, International Journal of Pavement Engineering, 21(6), 2018, Р. 1–12. DOI: https://doi.org/10.1080/10298436.2018.1441414 [in English].
  55. M.R. Kaloop, S.M. El-Badawy, J. Ahn, H.-B. Sim, J W. Hu, R.T.A. El Jakim: A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness
    index of rigid pavements, International Journal of Pavement Engineering, 23(3), 2022. Р. 862–876. DOI: https://doi.org/10.1080/10298436.2020.1776281 [in English].
  56. H. Pérez-Acebo, N. Mindra, A. Railean: Rigid pavement performance models by means of Markov Chains with half-year step time. International Journal of Pavement Engineering, 20(1), 2017. Р. 1–14 [in English].