Environmental impacts of using foamed asphalt

Опубліковано:
Номер: Випуск 27(2023)
Розділ: Технології захисту навколишнього середовища
Cторінковий інтервал статті: 296–306
Ключові слова: energy savings, environmental impacts, reclaimed asphalt pavement, life cycle assessment, warm mix asphalt
Як цитувати статтю: László Gáspár, Ali Saleh. Environmental impacts of using foamed asphalt. . Dorogi і mosti [Roads and bridges]. Kyiv, 2023. Iss. 27. P. 296–306 [in Ukrainian].
Як цитувати статтю (references): László Gáspár, Ali Saleh. Environmental impacts of using foamed asphalt. . Dorogi і mosti [Roads and bridges]. Kyiv, 2023. Iss. 27. P. 296–306 [in Ukrainian].

Автори

Széchenyi István University, Faculty of Civil Engineering, Győr, Hungary
https://orcid.org/0000-0002-6575-0297
Інститут транспортних наук KTI, некомерційне ТОВ, Будапешт, Угорщина
https://orcid.org/0000-0002-0574-4100

Анотація

Introduction. There has been a world-wide tendency, a global trend to reduce energy demand using a wide variety of methods. With this, on the one hand, the goal is to conserve the limited available and increasingly expensive energy carriers, and on the other hand, it is strived to reduce the emission of greenhouse gases and thereby fight against climate change.

Problem statement. In the field of road construction, the most widespread manifestation of this sustainability endeavour is the goal of replacing high-energy, hot asphalt mixtures (HMA) with variants of suitable quality. It is a common experience that in this field, the so-called warm asphalt mixtures (WMA) can be the most effective solution.

Purpose. The purpose of this article is to examine the environmental effects of the WMA. The authors of the article also deal with whether the type of substitute asphalt mixture does not represent a (long-term) performance reduction in the asphalt layers.

Materials and methods. Environmental safety of asphalt mixing plants is a growing concern nowadays due to the high temperature of asphalt mixture production requiring a lot of energy, and resulting in much air pollutants released into the air. The comparison between hot mix asphalt (HMA) and warm mix asphalt (WMA) was performed using BEES (Building for Environmental and Economic Sustainability) 4.0 model; just now the environmental features of the two asphalt mixture types was concentrated on. (The model has also an economic element).

Results. It was shown that the application of WMA – in addition to the obvious economic advantages – reduces air pollution by 25.6 %, and fossil fuel consumption by 19.9 %, as well as it decreases the environment impacts by 11.4 % during its whole life time related to those of HMA.

Посилання

  1. N. Bower, H. Wen, S. Wu, K. Willoughby, J. Weston, and J. DeVol. Evaluation of the performance of warm mix asphalt in Washington state. Int. J. Pavement Eng.. Vol. 17, no. 5. P. 423–434, 2016. DOI: 10.1080/10298436.2014.993199.
  2. Dong, X. Yu, B. Xu, and T. Wang. Comparison of high temperature performance and microstructure for foamed WMA and HMA with RAP binder. Constr. Build. Mater. Vol. 134. P. 594–601. 2017. DOI: 10.1016/j.conbuildmat.2016.12.106.
  3. M. R. Mohd Hasan, Z. You, H. Yin, L. You, and R. Zhang. Characterizations of foamed asphalt binders prepared using combinations of physical and chemical foaming agents. Constr. Build. Mater. Vol. 204. P. 94–104. 2019. DOI: 10.1016/j.conbuildmat.2019.01.156.
  4. Vaitkus, D. Čygas, A. Laurinavičius, and Z. Perveneckas. Analysis and evaluation of possibilities for the use of warm mix asphalt in Lithuania. Balt. J. Road Bridg. Eng. 2009. Vol. 4, no. 2. P. 80–86.
  5. L. P. Ingrassia, X. Lu, G. Ferrotti, and F. Canestrari. Renewable materials in bituminous binders and mixtures: Speculative pretext or reliable opportunity? Resour. Conserv. Recycl. Vol. 144, no. August 2018, P. 209–222. 2019. DOI: 10.1016/j.resconrec.2019.01.034.
  6. Robinette and J. Epps. Energy, emissions, material conservation, and prices associated with construction, rehabilitation, and material alternatives for flexible pavement. Transp. Res. Rec. no.  179. P. 10–22. 2010. DOI: 10.3141/2179-02.
  7. M. Zaumanis and V. Haritonovs. Research on Properties of Warm Mix Asphalt. Constr. Sci. Vol. 11. 2010.
  8. Jamshidi, M. O. Hamzah, and Z. You. Performance of Warm Mix Asphalt containing Sasobit®: State-of-the-art. Constr. Build. Mater. Vol. 38. P. 530–553. 2013. DOI: 10.1016/j.conbuildmat.2012.08.015.
  9. F. L. Roberts, L. N. Mohammad, and L. B. Wang. History of Hot Mix Asphalt Mixture Design in the United States. Perspect. Civ. Eng. Commem. 150th Anniv. Am. Soc. Civ. Eng. no. August. P. 291–305. 2003. DOI: 10.1061/(asce)0899-1561(2002)14:4(279).
  10. M. M. E. Zumrawi and S. A. S. Edrees. Comparison of Marshall and Superpave asphalt design methods for Sudan pavement mixes. Int. J. Sci. Tech. Adv. Vol. 2, no. 1. P. 29–35. 2016.
  11. H. Wang, X. Liu, P. Apostolidis, and T. Scarpas. Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology. J. Clean. Prod. Vol. 177. P. 302–314. 2018. DOI: 10.1016/j.jclepro.2017.12.245.
  12. Y. Kim, J. Lee, C. Baek, S. Yang, S. Kwon, and Y. Suh. Performance evaluation of warm-and hot-mix asphalt mixtures based on laboratory and accelerated pavement tests. Adv. Mater. Sci. Eng. Vol. 2012. 2012.
  13. R.Tarefder and J. Pan. Field and Laboratory Evaluation of Warm Asphalt Mixes (WMA) - Phase 1 Report number: NM13MSC-04 Research Bureau New Mexico Department of Transportation 2014. 2014. 147 p. DOI: 10.13140/RG.2.1.4514.7367.
  14. D’Angelo et al. Warm-mix asphalt: European practice. Washington, DC, United States. No. FHWA-PL-08-007. 2008. URL: https://rosap.ntl.bts.gov/view/dot/772.
  15. S. Y. Teh and M. O. Hamzah. Asphalt mixture workability and effects of long-term conditioning methods on moisture damage susceptibility and performance of warm mix asphalt. Constr. Build. Mater. Vol. 207. P. 316–328. 2019. DOI: 10.1016/j.conbuildmat.2019.02.128.
  16. M. A. Farooq, M. S. Mir, and A. Sharma. Laboratory study on use of RAP in WMA pavements using rejuvenator. Constr. Build. Mater. 2018. Vol. 168. P. 61–72. DOI: 10.1016/j.conbuildmat.2018.02.079.
  17. Ali, A. Abbas, M. Nazzal, A. Alhasan, A. Roy, and D. Powers. Effect of temperature reduction, foaming water content, and aggregate moisture content on performance of foamed warm mix asphalt. Constr. Build. Mater. 2013. Vol. 48. P. 1058–1066. DOI: 10.1016/j.conbuildmat.2013.07.081.
  18. M. Khedmati, A. Khodaii, and H. F. Haghshenas. A study on moisture susceptibility of stone matrix warm mix asphalt. Constr. Build. Mater. 2017. Vol. 144, P. 42–49. 2017. DOI: 10.1016/j.conbuildmat.2017.03.121.
  19. A. Kavussi and L. Hashemian. Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes. Int. J. Pavement Eng. Vol. 13. no. 5. P. 415–423. 2012. DOI: 10.1080/10298436.2011.597859.
  20. S. Wu and X. Li. Evaluation of effect of curing time on mixture performance of Advera warm mix asphalt. Constr. Build. Mater. Vol. 145. P. 62–67. 2017. DOI: 10.1016/j.conbuildmat.2017.03.240.
  21. S. Amelian, M. Manian, S. M. Abtahi, and A. Goli. Moisture sensitivity and mechanical performance assessment of warm mix asphalt containing by-product steel slag. J. Clean. Prod. Vol. 176. P. 329–337. 2018. DOI: 10.1016/j.jclepro.2017.12.120.
  22. Wu, M. Zeng, M. Wang, and Y. Xia. Determination of the mixing and compaction temperatures for warm mix asphalt with Sasobit [J]. J. Hunan Univ. Nat. Sci. Vol. 8. P. 1–5. 2010.
  23. O. N. Çelik and C. D. Atiş. Compactibility of hot bituminous mixtures made with crumb rubber-modified binders. Constr. Build. Mater. 2008. Vol. 22. no. 6. P. 1143–1147. DOI: 10.1016/j.conbuildmat.2007.02.005.
  24. B. K. Bairgi, R. A. Tarefder, and M. U. Ahmed. Long-term rutting and stripping characteristics of foamed warm-mix asphalt (WMA) through laboratory and field investigation. Constr. Build. Mater. Vol. 170. P. 790–800. 2018. DOI: 10.1016/j.conbuildmat.2018.03.055.
  25. P. E. Sebaaly, E. Y. Hajj, and M. Piratheepan. Evaluation of selected warm mix asphalt technologies. Road Mater. Pavement Des. Vol. 16. no. September 2015. P. 475–486. 2015. DOI: 10.1080/14680629.2015.1030825.
  26. L. You, Z. You, Q. Dai, S. Guo, J. Wang, and M. Schultz. Characteristics of Water-Foamed Asphalt Mixture under Multiple Freeze-Thaw Cycles: Laboratory Evaluation. J. Mater. Civ. Eng. Vol. 30. no. 11. P. 04018270. 2018. DOI: 10.1061/(asce)mt.1943-5533.0002474.
  27. T. Gandhi, W. Rogers, and S. Amirkhanian. Laboratory evaluation of warm mix asphalt ageing characteristics. Int. J. Pavement Eng. Vol. 11. no. 2. P. 133–142. 2010. DOI: 10.1080/10298430903033339.
  28. F. Xiao, V. S. Punith, B. Putman, and S. N. Amirkhanian. Utilization of Foaming Technology in Warm-Mix-Asphalt Mixtures Containing Moist Aggregates. J. Mater. Civ. Eng. Vol. 23, no. 9. P. 1328–1337. 2011. DOI: 10.1061/(asce)mt.1943-5533.0000297.
  29. H. Malladi, D. Ayyala, A. A. Tayebali, and N. P. Khosla. Laboratory Evaluation of Warm-Mix Asphalt Mixtures for Moisture and Rutting Susceptibility. J. Mater. Civ. Eng. Vol. 27. no. 5. P. 1–6. 2015. DOI: 10.1061/(asce)mt.1943-5533.0001121.
  30. H. Yu, Z. Leng, Z. Dong, Z. Tan, F. Guo, and J. Yan. Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives. Constr. Build. Mater. Vol. 175. P. 392–401. 2018. DOI: 10.1016/j.conbuildmat.2018.04.218.
  31. Topal, J. Oner, B. Sengoz, P. A. Dokandari, and D. Kaya. Evaluation of Rutting Performance of Warm Mix Asphalt. Int. J. Civ. Eng. Vol. 15, no. 4. P. 705–714. 2017. DOI: 10.1007/s40999-017-0188-5.
  32. A. Syed, U. A. Mannan, and R. A. Tarefder. Comparison of rut performance of asphalt concrete and binder containing warm mix additives. Int. J. Pavement Res. Technol. Vol. 12, no. 2. P. 162–169. 2019. DOI: 10.1007/s42947-019-0021-4.
  33. N. M. Asmael, M. Y. Fattah, and A. J. Kadhim. Evaluate Resistance of Warm Asphalt Mixtures to Rutting. IOP Conf. Ser. Mater. Sci. Eng. Vol. 745, no. 1, 2020. DOI: 10.1088/1757-899X/745/1/012109.
  34. S. Xu, F. Xiao, S. Amirkhanian, and D. Singh. Moisture characteristics of mixtures with warm mix asphalt technologies – A review. Constr. Build. Mater. Vol. 142, P. 148–161. 2017. DOI: 10.1016/j.conbuildmat.2017.03.069.
  35. F. Xiao, V. S. Punith, S. N. Amirkhanian, and C. Thodesen. Improved Resistance of Long-Term Aged Warm-Mix Asphalt to Moisture Damage Containing Moist Aggregates. J. Mater. Civ. Eng. Vol. 25. no. 7. P. 913–922. 2013. DOI: 10.1061/(asce)mt.1943-5533.0000567.
  36. B. C. Lippiatt. Building for environmental and economic sustainability technical manual and user guide. Natl. Inst. Stand. Technol. Technol. Adm. US Dep. Commer. 2007.
  37. N. J. Santero, E. Masanet, and A. Horvath. Life-cycle assessment of pavements. Part I: Critical review. Resour. Conserv. Recycl. Vol. 55. no. 9–10. P. 801–809. 2011.
  38. S. O. (ISO) 14040 Environmental Management-Life Cycle Assessment-Principles and Frame-work [S]. 1997.
  39. L. N. Mohammad, M. Asce, M. M. Hassan, M. Asce, and B. Vallabhu. Louisiana’s Experience with WMA Technologies: Mechanistic, Environmental, and Economic Analysis. DOI: 10.1061/(ASCE)MT.1943-5533.0001143.
  40. L. Cheng, D. Chen, and G. Yan. Warm Mix Asphalt (WMA) replacing Hot Mix Asphalt (HM). 2010.
  41. Lippiatt B., BEES 4.0: Building for Environmental and Economic Sustainability. Technical Man-ual and User Guide, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, 2007. URL: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860108 (Accessed November 25, 2022).
  42. M. Hassan. Evaluation of the environmental and economic impacts of warm-mix asphalt using life-cycle assessment. Int. J. Constr. Educ. Res. Vol. 6, no. 3. P. 238–250. 2010. DOI: 10.1080/15578771.2010.507619.
  43. L. C. Data, National Renewable Energy Laboratory (NREL): US Life-Cycle Inventory Database. 2005. Golden, CO. Found http//www. nrel. gov/lci/database. PRé Consult. SimaPro. Vol. 6. P. 1990–2004.
  44. M. Lecomte, F. Deygout, and A. Menetti. Emission and occupational exposure at lower asphalt production and laying temperatures. Apresentado. Vol. 23, 2007.
  45. Ó. Kristjánsdóttir, S. T. Muench, L. Michael, and G. Burke. Assessing Potential for Warm-Mix Asphalt Technology Adoption. no. 2040. P. 91–99. 2007. DOI: 10.3141/2040-10.
  46. M. R. Pouranian and M. Shishehbor. Sustainability Assessment of Green Asphalt Mixtures: A Review. Environment.Vol. 6, no. 73. 55 p. DOI:10.3390/environments60600732019.
  47. L. Gáspár and A. Saleh. Functional and environmental impacts of the use of reclaimed asphalt pavement materials and of foamed asphalt. Acta Technica Jaurinensis. Vol. 14, No. 2. 2021. DOI:10.14513/actatechjaur.00590.