Machine learning modelling the rut depth of WMA mixtures with variable reclaimed asphalt pavement (RAP) and foamed bitumen content

Опубліковано:
Номер: Випуск 30(2024)
Розділ: Будівництво та цивільна інженерія
Cторінковий інтервал статті: 138-156
Ключові слова: foamed bitumen; warm mix asphalt; reclaimed asphalt pavement; Neural Network; GPR; Machine learning (спінений бітум, тепла асфальтобетонна суміш, рецикльоване асфальтобетонне покриття, Нейронна Мережа, Регресія на основі Гаусівських процесів (GPR), машинн
Як цитувати статтю: Ali Saleh, László Gáspár. Machine learning modelling the rut depth of WMA mixtures with variable reclaimed asphalt pavement (RAP) and foamed bitumen content. Dorogi і mosti [Roads and bridges]. Kyiv, 2024. Issue 30. P. 138–156 [in Ukrainian].
Як цитувати статтю (references): Ali Saleh, László Gáspár. Machine learning modelling the rut depth of WMA mixtures with variable reclaimed asphalt pavement (RAP) and foamed bitumen content. Dorogi і mosti [Roads and bridges]. Kyiv, 2024. Issue 30. P. 138–156 [in Ukrainian].

Автори

Széchenyi István University, Faculty of Civil Engineering, Győr, Hungary
https://orcid.org/0000-0002-6575-0297
KTI Угорський інститут транспортних наук і логістики, некомерційне товариство з обмеженою відповідальністю, м. Будапешт, Угорщина
https://orcid.org/0000-0002-0574-4100

Анотація

Introduction. Rutting of flexible, super flexible and semi-rigid pavement structures is a typical and frequently decisive condition parameter, form of pavement deterioration. That is why, any research result in the field can have of high importance for the road engineers. 

Problem Statement Rutting poses a significant challenge to asphalt pavements, causing permanent deformation under heavy loads, particularly in warm and wet conditions.

Purpose. This pavement distress type has — in addition to riding comfort challenges — important traffic safety consequences (e.g. aquaplaning), as well. The research work concentrates on the influence of the use of warm mix asphalt, reclaimed asphalt material and foamed bitumen binder on the rut depth of asphalt pavements.

Materials and Methods. In integration of machine learning techniques, a Feedforward Neural Network model was presented to analyse the relationship between pavement rut depth and Reclaimed Asphalt Pavement (RAP) content. The model, trained for RAP content ranging from 0 % to 100 %, showcased varying R-squared values, with the highest at 50 % RAP content. Additionally, a Gaussian Process Regression (GPR) model was employed, highlighting the significant effects of RAP content between 75 % and 100 %. Sensitivity analysis on the GPR model provided insights into parameter effects, while the significant influence of the number of wheel passes on pavement rut depth values emphasized the importance of optimal road maintenance timing.

Results The results of the machine learning model indicated a R-squared value of 0.476 for 0 % RAP content and higher values for mixtures containing RAP, with the highest value of 0.897 was found for 50 % RAP content in the asphalt mixture. A Gaussian Process Regression (GPR) model applied showed paradoxical effects between 75 % and 100 % RAP content. The derivative of the predicted mean rut depth as a function of RAP content revealed varying effects on Rut depth values in the case of different RAP content ranges. Sensitivity analysis on the GPR model was conducted by varying parameters such as Length Scale, Noise Level, and Amplitude. The results of this analysis provided insights into how changes in these parameters affected the mean squared error (MSE) for their various combinations. The influence of the number of wheel passes on rut depth values was examined, showing a significant increase in rut depth after 12,000 passes and reaching its maximum value after 20,000 passes.

Посилання

  1. Batioja-Alvarez, D., et al.: Asphalt Mixture Quality Acceptance using the Hamburg Wheel-Tracking Test. Transp. Res. Rec., 2674(8), 2019. Р. 338–349. DOI: https://doi:10.1177/036119812091974 [in English].
  2. Chaturabong, P., Bahia, H. U.: Mechanisms of asphalt mixture rutting in the dry Hamburg Wheel Tracking test and the potential to be alternative test in measuring rutting resistance. Constr. Build. Mat., 146, 2017. Р. 175–182. DOI: https://doi:10.1016/j.conbuildmat.2017.04.080 [in English].
  3. Jahangiri, B. et al.: Relaxation of Hardening in Asphalt Concrete under Cyclic Compression Loading. J. of Mat. in Civ. Eng., 19 (5), 2016, 04016288. DOI: https://doi:10.1061/(ASCE) [in English].
  4. Mohammad, L. N. et al.: Evaluation of various Hamburg wheel-tracking devices and AASHTO T. 324 specification for rutting testing of asphalt mixtures.  In Asph. Pav. Tech.: Association of Asphalt Paving Technologists - Proceedings of the Technical Sessions, Association of Asphalt Paving Technologist, 2017. Р. 165–185. DOI: https://doi:10.1080/14680629.2017.1389092 [in English].
  5. Lv, Q. et al.: Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg Wheel-Tracking Device test and Multiple Stress Creep Recovery test. Con. Build. Mat. 2066, 2019. Р. 2–70. DOI: https://doi:10.1016/j.conbuildmat.2019.02.015 [in English].
  6. Ziari, H. et al.: Performance evaluation of rubberised asphalt mixes containing WMA additives. Int. J. of Pav. Eng., 19(7), 2018. Р. 623–629. DOI: https://doi:10.1080/10298436.2016.1199874 [in English].
  7. Walubita, L. F. et al.: The Hamburg rutting test - Effects of HMA sample sitting time and test temperature variation. Con. Build. Mat., 108, 2016. Р. 22–28. DOI: https://doi:10.1016/j.conbuildmat. 2016.01.031 [in English].
  8. B. Jahangiri et al.: Performance Evaluation of Asphalt Mixtures with Reclaimed Asphalt Pavement and Recycled Asphalt Shingles in Missouri. Trans. Res. Rec., 2673(2), 2019, 392–403. DOI: https://doi:10.1177/0361198119825638 [in English].
  9. Buss, A. et al.: Evaluation of moisture susceptibility tests for warm mix asphalts. Con. Build. Mat. 102, 2016. Р. 358–366. DOI: https://doi:10.1016/j.conbuildmat.2015.11.01 [in English].
  10. Standard Specification for Coarse Aggregate for Bituminous Paving Mixtures. ASTM D692-00. American Association of State Highway and Transportation Officials, Washington, DC, USA, 2010 [in English].
  11. Standard Specification for Fine Aggregate for Asphalt Paving Mixtures. ASTM D1073-16. American Association of State Highway and Transportation Officials, Washington, DC, USA, 2022 [in English].
  12. EN 13043 Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas. 2002. 40 p. [in English].
  13. EN 12591 Bitumen and Bituminous Binders – Specifications for Paving Grade Bitumens. British Standards Institution (BSI), London, UK. 2009. 36 p. [in English].
  14. Ojha, V. K. et al.: Metaheuristic Design of Feedforward Neural Networks: A Review of Two Decades of Research. Eng. Appl. of Art. Intel., 60, 2017. Р. 97–116, https://doi:10.1016/j.engappai. 2017.01.013 [in English].
  15. Popoola, S. I. et al.: Optimal model for path loss predictions using feed-forward neural networks. Cog. Eng., 5(1), 2018, 1444345. DOI: https://doi:10.1080/23311916.2018.1444345 [in English].
  16. Wang J.: An Intuitive Tutorial to Gaussian Process Regression. University of Waterloo, Canada, 2024, 8 p. [in English].
  17. Williams, C.: Gaussian Processes for Machine Learning. Massachusetts Institute of Technology, USA, 2006, 266 p. [in English].
  18. Rasmussen, C. E.., De, H. M.: Gaussian Processes for Machine Learning (GPML), 2010. Toolbox Hannes Nickisch. Retrieved March 2, 2024, from URL: http://www.kyb.tuebingen.mpg.de/bs/people/ carl/code/minimize [in English].
  19. Uwanuakwa, I. D. et al.: Artificial intelligence prediction of rutting and fatigue parameters in modified asphalt binders. Appl. Sci., 10(21), 2020. Р. 1–17. DOI: https://doi:10.3390/app10217764 [inEnglish].