Analysis of approaches to assessing rainwater infiltration into roadside soils

published:
Number: Issue 30(2024)
Section: Geodesy and land management
The page spacing of the article: 253-263
Keywords: highway, moisture, soil, rain, embankment, precipitation, roadside.
How to quote an article: Volodymyr Kaskiv, Kostiantyn Kasai. Analysis of approaches to assessing rainwater infiltration into roadside soils. Dorogi і mosti [Roads and bridges]. Kyiv, 2024. Issue 30. P. 253–263 [in Ukrainian].

Authors

National Transport University (NTU), Kyiv, Ukraine
https://orcid.org/0000-0003-3292-3339
State Enterprise «National Institute for Development Іnfrastructure» (SE «NIDI»), Kyiv, Ukraine
https://orcid.org/0000-0002-8074-6798

Summary

Introduction. The article investigates the impact of atmospheric precipitation on road structures, specifically focusing on water infiltration into the roadside soil along highways, which is a critical aspect of road infrastructure maintenance. Ensuring the reliable operation of the roadway is becoming increasingly important due to rising traffic loads and climate changes that result in increased precipitation. Continuous moisture penetration into the road embankment can lead to road degradation, creating risks for safe traffic movement and necessitating frequent repairs. It is essential to develop and implement effective methods for assessing moisture infiltration into the soil, which will help ensure the longevity and cost-efficiency of road operation. 

Problem Statement. With climate change and increasing intensity of precipitation, the issue of assessing its impact on road structures becomes more relevant. Moisture accumulation in the road embankment can disrupt the stability of the soil foundation, reducing the load-bearing capacity of the road surface. Research aimed at analyzing rainfall infiltration and its effect on road structures will allow the implementation of effective solutions to maintain the operational condition of roads. 

Objective. The objective of this study is to compare two main methods for assessing the amount of precipitation infiltrating the roadside soil along highways, taking into account different climatic and geological conditions. The research aims to identify the advantages and limitations of each method for further application in road engineering practice to ensure the reliability of road infrastructure. 

Materials and Methods. The study utilized statistical methods to analyze precipitation data from various sources, calculating Pearson correlation coefficients. This allowed an assessment of the relationship between precipitation data and its impact on roadside soil. Additionally, the study compared two methodologies: the method of regulating the hydrothermal regime of road structures, which accounts for seasonal climatic changes, and the method of using geosynthetic materials to control water infiltration. 

Results. Data analysis showed that all three sets of meteorological data have a high degree of correlation, indicating consistency across different sources and their suitability for scientific calculations. The comparison of methods revealed that the method of regulating the hydrothermal regime takes into account natural and seasonal factors affecting the moisture infiltration process, but its application is complex due to the large amount of input data required and the need for parameter adjustments to achieve accurate results. The method involving the use of geosynthetic materials proved to be more effective in conditions of increased moisture and in areas with complicated geological conditions, as it allows for better control of water ingress into the roadside using modern technical solutions. 

Conclusions. The study concluded that both methods can be effectively applied to assess precipitation infiltration into roadside soil depending on the specific project conditions. The method of regulating the hydrothermal regime is more suitable for projects where seasonal climate changes and natural processes need to be considered. On the other hand, the geosynthetic materials method is more effective in areas with high moisture levels and complex geological conditions. The research results will contribute to improving design solutions for road operation in the context of climate change and enhancing the resilience of road structures to the effects of precipitation. Further research should focus on improving existing methodologies and developing new approaches to increase the reliability of road structures. 

References

  1. Petrovych V. V., Kasai K. I. Doslidzhennia kharakterystyk opadiv dlia rozrakhunkiv poverkhnevoho vodovidvedennia y infiltratsii volohy v grunt zemlianoho polotna avtomobilnykh dorih. Avtomobilni dorohy i dorozhnie budivnytstvo (Research of precipitation characteristics for calculations of surface water drainage and moisture infiltration into the soil of road surface). 2024. Vyp. 119. Ch.2. Р. 137–146 [in Ukrainian].
  2. Naukovo-prykladnyi dovidnyk z klimatu SRSR. Seriia 3. Bahatorichni dani. Chastyny 1-6. Vypusk 10 (Scientific and applied handbook on the climate of the USSR. Series 3. Long-term data). Ukrainska RSR. Knyha 1. Hidrometyoizdat, 1990. 605 р. [in Ukrainian].
  3. DSTU-N B V.1.1-27:2010 Budivelna klimatolohiia (Building climatology). Minrehionbud Ukrainy, 2011. 127 р. (Informatsiia ta dokumentatsiia). [in Ukrainian].
  4. Sidenko V. M. Rozrakhunok i rehuliuvannia vodno-teplovoho rezhymu dorozhnikh odiahiv i zemlianoho polotna (Calculation and regulation of the water-thermal regime of road surfaces and ground surface). Avtotransizdat, 1962. 116 р. [in Ukrainian].
  5. Puzakov M. A., Zolotar I. A., Sidenko V. M., Tulaiev A. Ia. Vodno-teplovyi rezhym zemlianoho polotna i dorozhnikh odiahiv (Water-heat mode of the ground surface and road clothing). Transport, 1971. 414 р. [in Ukrainian].
  6. Sidenko V. M. Avtomobilni dorohy. Udoskonalennia metodiv proektuvannia i budivnytstva (Automobile roads. Improvement of design and construction methods). Budivelnyk, 1973. 279 р. [in Ukrainian].
  7. Savenko V. Ia., Kaskiv V. I. Vplyv opadiv na rozpodil volohosti hruntiv verkhnoi chastyny zemlianoho polotna. Avtomobilni dorohy i dorozhnie budivnytstvo (The influence of precipitation on the distribution of soil moisture in the upper part of the subsoil). 1997. Vyp. 54. Р. 6–11 [in Ukrainian].
  8. Kaskiv V. I. Udoskonalennia pokaznykiv robochoi zony vysokykh nasypiv z vrakhuvanniam infiltratsii atmosfernykh opadiv (Improvement of indicators of the working zone of high embankments, taking into account the infiltration of atmospheric precipitation) : dys... kand. tekhn. nauk : 05.22.11. K., 1998. 286 р. [in Ukrainian].
  9. Savenko V. Ia., Slavinska O. S., Stozhka V. V. Indyvidualnyi pidkhid pry proektuvanni drenazhiv milkoho zaliahannia z urakhuvanniam klimatychnykh osoblyvostei rehionu (An individual approach to the design of shallow drainages taking into account the climatic features of the region). Avtomobilni dorohy i dorozhnie budivnytstvo. 2011. Vyp. 80. Р. 3–15 [in Ukrainian].
  10. Stozhka V. V. Udoskonalennia metodu rozrakhunku drenazhnykh system milkoho zakladennia (Improvement of the calculation method of drainage systems of shallow laying) : dys... kand. tekhn. nauk : 05.22.11. K., 2015. 219 р. [in Ukrainian].
  11. Bubela A. V. Doslidzhennia zakonomirnostei zvolozhennia dorozhnoi konstruktsii ta metody yoho rehuliuvannia. Avtomobilni dorohy i dorozhnie budivnytstvo (Study of patterns of moistening of the road structure and methods of its regulation). 2019. Issue 105. Р. 44–48. URL: http://publications.ntu.edu.ua/ avtodorogi_i_stroitelstvo/105/44.pdf [in Ukrainian].
  12. Savenko V., Kvatadze A., Davydenko O., Stozhka V., Ianchuk L. Forecasting of the moisture mode of the drainage layer of a road structure under the action of a load. Eastern-European Journal of Enterprise Technologies. 2020. Vol. 4, No. 7 (106). P. 62–75. URL: https://doi.org/10.15587/1729-4061.2020.209421 [in Ukrainian].
  13. Bubela A. V. Metodolohiia proektuvannia poperechnykh drenazhiv milkoho zakladannia z otsinkoiu yakisnoho stanu avtomobilnoi dorohy (Methodology for the design of transverse drains of shallow laying with an assessment of the quality condition of the road): dys... d-ra. tekhn. nauk : 05.22.11. K., 2021. 427 р. [in Ukrainian].
  14. Ruvynskyi V. I. Optymalni konstruktsii zemlianoho polotna na osnovi rehuliuvannia vodno-teplovoho rezhymu (Optimal constructions of the ground surface based on the regulation of the water-heat regime). Transport, 1982. 166 р. [in Ukrainian].
  15. Kaskiv V. I., Havryshchuk V. V. Obgruntuvannia dotsilnosti proiektuvannia system poverkhnevoho vodovidvedennia, yak skladovoi kompleksu ochysnykh sporud na avtomobilnykh dorohakh (Justification of the expediency of designing surface drainage systems as a component of the complex of treatment facilities on highways). Dorohy i mosty. 2020. Issue 21. Р. 95–109. URL: https://doi.org/ 10.36100/dorogimosti2020.21.095 [in Ukrainian].
  16. Kaskiv V., Havryshchuk V. Mathematical model for the duration of runoff formation determined from the road surface. Heliyon. Volume 6, Issue 12, E05687, December 01, 2020 URL: https://doi.org/10.1016/j.heliyon.2020.e05687 [in English].
  17. Solodkyi S. I., Kaskiv V. I., Havryshchuk V. V. Poverkhneva kontsentratsiia stoku ta rozrakhunkovyi pokhyl avtomobilnykh dorih (Surface concentration of runoff and calculated slope of highways.). Avtomobilni dorohy i dorozhnie budivnytstvo. 2019. Issue 106. Р. 46–53 [in Ukrainian].
  18. MR V 2.3-02070915-849:2014 Metodychni rekomendatsii shchodo rehuliuvannia vodno-teplovoho rezhymu u mezhakh robochoho sharu zemlianoho polotna avtomobilnykh dorih (Methodological recommendations for regulating the water-heat regime within the working layer of the road surface). 2014. 61 р. (Informatsiia ta dokumentatsiia) [in Ukrainian].
  19. R V.2.3-218-02070915-755:2009 Rekomendatsii iz zastosuvannia heosyntetychnykh materialiv pry rehuliuvanni vodno-teplovoho rezhymu dorozhnoi konstruktsii (Recommendations for the use of geosynthetic materials in regulating the water-thermal regime of the road structure). 2009. 13 р. (Informatsiia ta dokumentatsiia) [in Ukrainian].
  20. Posibnyk do DSTU 9057:2020 nastanova z proiektuvannia ta vlashtuvannia sporud poverkhnevoho vodovidvedennia na avtomobilnykh dorohakh zahalnoho korystuvannia (guidelines for the design and installation of surface water drainage facilities on public highways). K., 2020. 121 р. (Informatsiia ta dokumentatsiia) [in Ukrainian].
  21. M 218-02070915-684:2011 Metodyka vyznachennia propusknoi zdatnosti drenazhnoi konstruktsii milkoho zaliahannia z urakhuvanniam richnoho tsyklu roboty (Methodology for determining the throughput capacity of a shallow drainage structure taking into account the annual work cycle). 2011. 26 р. (Informatsiia ta dokumentatsiia) [in Ukrainian].
  22. MR V.2.3-37641918-933:2023 Metodychni rekomendatsii z proiektuvannia dorozhnikh konstruktsii z poperechnymy trubchastymy drenazhamy milkoho zakladannia na osnovi doslidzhennia napruzheno-deformovanoho stanu (Methodical recommendations for the design of road structures with transverse tubular drains of shallow laying based on the study of the stress-strain state). 2023. 31 р. (Informatsiia ta dokumentatsiia) [in Ukrainian].
  23. Posibnyk z proektuvannia metodiv rehuliuvannia vodno-teplovoho rezhymu verkhnoi chastyny zemlianoho polotna (Guide to the design of methods of regulating the water-thermal regime of the upper part of the earth bed) (do SNyP 2.05.02-85). 1989. 97 р. (Informatsiia ta dokumentatsiia) [in Ukrainian].
  24. DSTU B V.2.1-12:2009 Osnovy ta pidvalyny budynkiv i sporud. Grunty. Metod laboratornoho vyznachennia maksymalnoi shchilnosti (Foundations and foundations of buildings and structures. Soils. Method of laboratory determination of maximum density). 2010. 18 р. (Informatsiia ta dokumentatsiia) [in Ukrainian].
  25. DSTU B V.2.1-17:2009 Osnovy ta pidvalyny budynkiv i sporud. Grunty. Metody laboratornoho vyznachennia fizychnykh vlastyvostei (Foundations and foundations of buildings and structures. Soils. Method of laboratory determination of maximum density). 2010. 33 р. (Informatsiia ta dokumentatsiia) [in Ukrainian].
  26. DSTU B V.2.1-23:2009 Osnovy ta pidvalyny budynkiv i sporud. Grunty. Metody laboratornoho vyznachennia koefitsiienta filtratsii (Foundations and foundations of buildings and structures. Soils. Methods of laboratory determination of the filtration coefficient). 2010. 19 р. (Informatsiia ta dokumentatsiia) [in Ukrainian].